

MetlstormMetlstorm
Kiwicon 4, Nov 2010Kiwicon 4, Nov 2010

The Shell Game

Intro

● Hi, I'm Metlstorm
● I like unix
● And python
● But you probably knew that.

● I'm a whitehat sellout; roll with Insomnia &
Lateral Securities

● You may also know me from such cons as, uh,
Kiwicon.

On Selling Out

● I do a fair bit of “Red Team” testing
● Wide ranging, not much scope, external testing
● No info, go in like a real haxor
● Business targets, not technical project scope lies

● Value of
● Illustrates real world readiness
● Tests whole process – protect, detect, react
● Focuses the mind; nothing like tagging the CIO's

desktop or screen shots of mnemonic diagrams to get
attention

Restrictions & Realities

● But you can't really go in like a black hat; you
have to care some.
● make best effort to not break production
● If you take out someone's prod box, chances are

while it's a good lesson for everyone, you aint
gonna get another round next FY...

● So when you want to try the latest kernel
privesc from hawkes...

Privesc In Prod

● Kernel bugs are great
● Except for stability
● When they go wrong, they go really wrong.

– If you've just spent three days getting a shell, you really
really dont want to lose it

– Especially when your next two weeks of work rely on it

● Userland bugs are better
● Stable, aren't gonna destroy the box
● Mmm, LD_AUDIT! Nom nom!
● Bareback style; always works in the end.

But, is Root a Distraction?

● Do you really need root?
● For long term consilidation, prolly, yeah.
● For red teaming, perhaps, if you want to sniff, crack

or pivot off to other boxes
● But we're not here to own, long term

● For getting corp data, trophies, probably not
● FS perms are always awful
● Chances are you broke in via the webapp/db that

has the data anyway

Rootkits

● Are one good reason for root
● Red Teaming tests effectiveness of realworld

internal expansion pwnage
● So expanding access is necessary
● Which means we need to hide

– If we let them catch us early, they'll think they're doing it
right (when we all know they're not)

Rootkit Features

● In rough order of priority
● Persistent access
● Process hiding
● File hiding
● Socket hiding

● Last three all need root
● Or do they?

Non-Rootkits

● Can we hide as non-root?
● Sockets: not easily, no. Best we can do is have

innocuous DNS PTR
● Process … yes.
● Files … yes.

● :)

The Shell Game: Process

● We can't completely hide from ps list
● But we can hide in plain sight:
● L1: Name your process well:

● Cp hax0rtool.sh ./java
● -: can't hide arguments
● -: proc start time dead giveaway
● +: portable
● +: generic! Works with any binary
● +: easy, good enough
● +: doesn't break other things

Level 2

● Ptrace() attach to process, inplace replace with exec() +
argv stealth
● Keep original argv[], including args
● Switch out new process argv via breakpoint on main()
● +: inherits process start time
● +: still fairly portable, generic
● -: replaces something else

● Implemented as “execjack.py”
● Ala ssh-jack via gdb

– no asm; portable with gdb

– Also easy enough to implement via ptrace

Demo

● Process hiding, Level 2:
● Execjack vs ps

Level 3

● Ptrace() attach, clone(), inject code.
● Starts payload in a new thread in host binary
● Invisible to normal ps (without threads switch; eg ps -eLF)
● +: stealthy as
● -: Brittle

– injection into non-thread aware process fine

– Thread-aware a bit less fine, possibly.

● -: Not generic; payload needs to be shellcode

● Implemented by “ej2”
● Python + ptrace, inspired by “prez” by Fotis from Greece

– Injects peludo compiled payload

– (or MOSDEF, hand crafted)

Demo

● Process hiding, Level 3:
● ej2 vs ps

Hang On, Wait, err, Timeline?

● Welcome to like, Win32 circa 1995.
● Yeah. Embaressing huh?
● CreateRemoteThread() is just too easy; it's just not

sporting.

● Unix: where threading is still new and weird.
● So I asked myself, what would K&R do?

Level 4

● Ptrace() attach, inject parasitic cooperative backdoor
● Get control periodically via:

– signals (-ALRM, -VTALRM, -PROF) to get control

– Hooking some key function (eg. Select)

● Like a DOS TSR :)
● +: really really not visible to ps, even less so than threaded
● -: Fiddly; needs to assess best method for target binary
● -: Payload needs to be shellcode
● +: Doesn't impair normal operation (if we do it right)

● Not implemented yet :(
● Ran outta time. It's half done. Sorry. Stupid Tokemon.

A Side Note: Peludo

● Part of the Netifera project

● GCC-based compiler toolchain for buliding self contained binaries

● Position independent
● Shovel “.pld” archive into memory

● Jmp to start

● Takes care of linking, etc

● Has VFS layer for file access to in mem ramdisk

● +: They have a JVM that builds with it, which is BADASS.

● -: Their libc is still pretty minimal :(

● Reasonable competitor to MOSDEF

● Now I want a peludo-buildable (r)python...

The Shell Game: Files

● How do we hide files from root, as non root?
● And why?

● Avoid discovery via
– Sysadmins doing sysadminy things

– Backups

– HIDS (tripwire, integrit style)

– IR usually starts with “huh, thats weird...” - avoid looking weird

● Persistence
– Over reboots

– To run sneakiness when uid us logs in

● Stash
– Hide our tools, logs, other nefarious dataz

The Eponymous Shell Game

● Inotify based filesystem racer
● Inotify is linux kernel infrastructure for registering fs-change

callbacks
● Register read watches on directories above us
● Spot incoming directory traversal like behavior
● Batten down hatches when we someone comes our way

● Two options for hunkering down:
● Easier, Potentially Lossy:

– Hold open file handle to all files to hide

– Unlink them off disk

– Wait for traversal to go past

– Write back down to disk

Cont.

● Harder, Lossless:
– Hardlink all files to other end of disk (“safehouse”)

– Unlink out of original place

– Wait

– Spot traversal going to safehouse

– Switch

– Relink down into both places

● Files always linked to filesystem
– No risk of dataloss

– Risk of non-persistence (if killed while in safehouse)

● In both cases, fix up fs perms, timestamps
● Implemented both options in “shellgame”

Does it Actually Work?

● Yup
● Against tar, find, ls -R, updatedb, prolly even integrit

– i.e. all the things a thorough sysadmin would use

● But direct access still works, so our trojans can write their
logs, ha ha.

● Some care about choosing good locations to hide
– enough dirs deep
– Safehouse far enough away

● Could hammer disk to make it slower :)
● Basically good enough (got a better idea?)

● It'll work against most syadmins, I'll wager...

DEMO

● Demotiem nao!

shellgame -r test/test/test1 (no safehouse)

 vs. find -name test1

shellgame /tmp/z/z test/test/test1

 vs. tar c | tar t | grep

Countermeasures

● Execjack
● Modern ubuntu (>=10.10) has restricted ptrace kernel option

– Can only ptrace a child process

– Specifically names ssh-jack as a reason :D

– Use this (Dont be the guy running debian stable)

● Inotify
● Run < 2.6.13? ha ha.
● How do you even enumerate inotify watches?
● Dunno :)

● Dont get (non-root) owned?
● Hire someone else nooby to do your red teaming? :)

That's That

● Kthx
● Code will be up on storm.net.nz somtime

● After freakin' tokemon is gone.
● Also see http://fotis.loukos.me/ for PreZ injector

● Questions
● I didn't let WiteRabit proof my slides, so I am the winnar

(Hope you're enjoying Kiwicon 4!)

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24

